Bäcklund Transformations for Integrable Geometric Curve Flows

نویسندگان

  • Changzheng Qu
  • Jingwei Han
  • Jing Kang
چکیده

We study the Bäcklund transformations of integrable geometric curve flows in certain geometries. These curve flows include the KdV and Camassa-Holm flows in the two-dimensional centro-equiaffine geometry, the mKdV and modified Camassa-Holm flows in the two-dimensional Euclidean geometry, the Schrödinger and extended Harry-Dym flows in the three-dimensional Euclidean geometry and the Sawada-Kotera flow in the affine geometry, etc. Using the fact that two different curves in a given geometry are governed by the same integrable equation, we obtain Bäcklund transformations relating to these two integrable geometric flows. Some special solutions of the integrable systems are used to obtain the explicit Bäcklund transformations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bäcklund Transformations for Finite-dimensional Integrable Systems: a Geometric Approach

We present a geometric construction of Bäcklund transformations and discretizations for a large class of algebraic completely integrable systems. To be more precise, we construct families of Bäcklund transformations, which are naturally parametrized by the points on the spectral curve(s) of the system. The key idea is that a point on the curve determines, through the Abel-Jacobi map, a vector o...

متن کامل

Canonical explicit Bäcklund transformations with spectrality for constrained flows of soliton hierarchies

It is shown that explicit Bäcklund transformations (BTs) for the high-order constrained flows of soliton hierarchy can be constructed via their Darboux transformations and Lax representation, and these BTs are canonical transformations including Bäcklund parameter η and possess a spectrality property with respect to η and the ’conjugated’ variable μ for which the pair (η, μ) lies on the spectra...

متن کامل

Bäcklund transformations for high-order constrained flows of the AKNS hierarchy: canonicity and spectrality property

New infinite number of oneand two-point Bäcklund transformations (BTs) with explicit expressions are constructed for the high-order constrained flows of the AKNS hierarchy. It is shown that these BTs are canonical transformations including Bäcklund parameter η and a spectrality property holds with respect to η and the ’conjugated’ variable μ for which the point (η, μ) belongs to the spectral cu...

متن کامل

Geometric aspects of S-integrability1

This is a report on results on zero-curvature representations and Bäcklund transformations of S-integrable partial differential equations recently obtained within the framework of the Vinogradov diffiety theory.

متن کامل

Bäcklund transformations for integrable lattice equations

We give new Bäcklund transformations (BTs) for some known integrable (in the sense of being multidimensionally consistent) quadrilateral lattice equations. As opposed to the natural auto-BT inherent in every such equation, these BTs are of two other kinds. Specifically, it is found that some equations admit additional autoBTs (with Bäcklund parameter), whilst some pairs of apparently distinct e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Symmetry

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015